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Abstract 23 

Management of complex environmental problems, such as biological invasions, can be facilitated 24 

by integrating realistic geospatial models with user-friendly interfaces that stakeholders can use to 25 

make critical management decisions. However, gaps between scientific theory and application 26 

have typically limited opportunities for model-based knowledge to reach the stakeholders 27 

responsible for problem-solving. To address this challenge, we introduce Tangible Landscape, an 28 

open-source participatory modeling tool providing an interactive, shared arena for consensus-29 

building and development of collaborative solutions for landscape-scale problems. Using Tangible 30 

Landscape, stakeholders gather around a geographically realistic 3D visualization and explore 31 

management scenarios with instant feedback; users direct model simulations with intuitive tangible 32 

gestures and compare alternative strategies with an output dashboard. We applied Tangible 33 

Landscape to the complex problem of managing an invasive forest epidemic, sudden oak death, in 34 

California and explored its potential to generate co-learning and collaborative management 35 

strategies among actors representing stakeholders with competing management aims. 36 
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Software and data availability 46 

Tangible Landscape is available under GNU General Public License and can be downloaded 47 

at http://tangible-landscape.github.io together with installation and setup instructions. Tangible 48 

Landscape was developed by Anna Petrasova and Vaclav Petras (Petrasova et al., 2014, 2015). 49 

The source code of the epidemiological spread model used in this study is available under GNU 50 

General Public License and can be downloaded at https://github.com/f-tonini/SOD-modeling 51 

with installation and setup instructions as well as set of GIS layers necessary to run the model. 52 

The code was developed by Francesco Tonini and based on the original epidemiological 53 

framework presented by Meentemeyer et al. (2011). 54 

 55 

1. Introduction  56 

Critically addressing complex environmental problems requires cross-disciplinary 57 

participatory approaches that facilitate stakeholder engagement and improve the development of 58 

collective management strategies (Cabin et al., 2010; Reed, 2008; Stokes et al., 2006; Voinov 59 

and Bousquet, 2010). However, the substantial research effort devoted to the study of large-scale 60 

problems such as biological invasions has overwhelmingly focused on generating model-based 61 

understanding of invasion dynamics, rather than implementation of management and 62 

intervention, creating what has become known as the knowledge-practice gap (Esler et al., 2010; 63 

Matzek et al., 2014). Biological invasions pose a severe threat to ecosystem services and public 64 

health worldwide (Daszak, 2000; Hatcher et al., 2012; Kilpatrick et al., 2010), with average 65 

annual global economic costs exceeding those of natural disasters (Lovett et al., 2016; Ricciardi 66 

et al., 2011). Yet, scholarly incentives to build knowledge irrespective of practice (Matzek et al., 67 

2015), and mismatches between research and stakeholder priorities (e.g., academic priorities to 68 

http://tangible-landscape.github.io/
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publish ecological studies and stakeholder priorities to find management solutions, Bayliss et al., 69 

2013) have limited the generation of evidence-informed solutions. In the management of 70 

invasive species, the application of knowledge-based tools has been problematic in landscapes 71 

that include a mosaic of management jurisdictions (Epanchin-Niell et al., 2010; Stokes et al., 72 

2006), often resulting in competing interests between stakeholders and confusion as to who 73 

makes resource allocation decisions, who will benefit, and who pays (Voinov and Bousquet, 74 

2010). In consequence, efforts to eradicate or control the spread of invaders have generally been 75 

unsuccessful (Simberloff et al., 2005). 76 

One strategy for bridging the knowledge-practice gap involves making scientific models 77 

applicable by adding local context and easing accessibility (McCown, 2001). A suggested 78 

solution lies in the adoption of participatory modeling frameworks, which iteratively include 79 

stakeholders throughout the modeling process, and have been shown to maximize information 80 

transfer, generate buy-in, and create advocates for actions best supported by complex models 81 

(Perera et al., 2006). A special case, participatory simulation, has been proposed to move 82 

participants from passive or didactic learning about complex processes to experiential learning 83 

through immersion in what Colella (2000) calls the “computational sandbox,” i.e., simulations 84 

with realism adequate to temporarily suspend disbelief and constitute a shared experience. 85 

However, for complex, place-based problems like biological invasions, participatory modeling 86 

efforts have been hindered by a lack of realistic and intuitive geospatial modeling interfaces 87 

needed to generate contextualized understanding of spread dynamics among participants, thereby 88 

reducing barriers between specialists, management professionals, and stakeholders with varying 89 

levels of technical expertise. The availability of such interfaces could communicate complex 90 
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system dynamics in clear visualizations, help all participants to understand and interpret 91 

multidimensional data, and facilitate decision-making consensus among stakeholders. 92 

To address this need, we present Tangible Landscape (Petrasova et al., 2015), a flexible 93 

geospatial visualization and analysis platform that enables people with different backgrounds and 94 

levels of technical knowledge to direct dynamic computational simulations using simple tangible 95 

gestures. This novel approach seeks to bridge the knowledge-action gap by translating models of 96 

biological invasions into tools for strategic application to specific invasion challenges in real-97 

world landscapes with targeted practitioner and stakeholder communities (Esler et al., 2010; 98 

Kueffer and Hadorn, 2008). Tangible Landscape allows individuals and groups to generate data-99 

driven, spatially and temporally explicit projections of environmental management outcomes in 100 

near real-time in order to explore ramifications and risks associated with management action 101 

without threat of consequence. 102 

In a pilot exercise to test the capacity of Tangible Landscape to facilitate learning and 103 

generate collaborative management strategies, we simulated the management of an emerging 104 

forest disease, sudden oak death (SOD, caused by the pathogen Phytophthora ramorum). From 105 

the onset of the SOD epidemic in California, delays in identifying the pathogen, understanding 106 

the mechanisms of spread, and developing management treatments have resulted in the disease 107 

becoming established well beyond initial introductions (Meentemeyer et al., 2011, 2015). Time 108 

to action is a critical determinant of eradication efficacy for any disease, and the critical time 109 

horizon for eradication has passed (Cunniffe et al., 2016); SOD infects 35% of its anticipated 110 

range, an increase of 500% from 2006 (Filipe et al. 2012; Meentemeyer et al., 2011). While 111 

modeling suggests that large-scale eradication in California is no longer possible, local to 112 

landscape-scale efforts are still very useful for protecting high-value trees in priority areas 113 
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(Cunniffe et al., 2016). There is widespread recognition that collective effort is needed to reach 114 

scales of management likely to succeed (Frankel, 2008). 115 

We developed a customized deployment of Tangible Landscape that (1) adapted a 116 

dynamic spatially explicit model to a local study system parameterized using data on the spread 117 

of P. ramorum; (2) enabled place- and time-dependent interaction with the model using tangible 118 

representations of disease management actions on a physical model; (3) provided a shared 119 

environment for participants to discuss competing management perspectives and learn from each 120 

other; (4) created opportunities to develop and compare individual and collective management 121 

strategies; and (5) provided a graphic dashboard to track epidemic outcomes and cost of 122 

management treatments, providing feedback regarding how interactions influenced simulated 123 

disease spread. We roleplayed several stakeholder typologies associated with the study system 124 

and compared the performance of individual strategies with a strategy emerging from 125 

stakeholder consensus. 126 

  127 

2. Methodology  128 

2.1. Model Development 129 

2.1.1 The tangible geospatial modeling interface 130 

Tangible Landscape (Petrasova et al., 2014, 2015), formerly TanGeoMS (Tateosian et 131 

al., 2010), is a tangible user interface (TUI) that allows participants to direct computational 132 

modeling through tangible gestures on a scaled physical model of a landscape, onto which raster 133 

and vector environmental data from a GIS are projected (Fig. 1).  134 
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 135 

Figure 1. Tangible Landscape continuously scans (a) a physical terrain model (b), 136 

also “relief” in Fig. 6), identifies markers (c), computes geospatial analyses and simulations 137 

(d) and projects the resulting maps onto the model (e), together with the resulting analytics 138 

as a decision support dashboard (f). Available in color online. 139 

 140 

Users conduct typical GIS functions on the projected data, including editing and 141 

parameterizing simulation models, as direct manual interactions with the scaled model are 142 

detected by continuous automated 3D scanning (Fig. 1a). Changes in the physical model are 143 

detected, recorded and input into GIS for visualization, analysis, and simulation, e.g., whenever a 144 

user alters model topography (such as sculpting with sand or plasticine), places markers, or 145 
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moves building blocks. Tangible interaction frees participants from needing prior technical 146 

knowledge before directing sophisticated geospatial models. Maps or animations produced 147 

during tangible interaction are projected in near real-time, creating visuals that are readily 148 

understood and can inform future interaction. A decision support dashboard reports analytics and 149 

the results of queries using spreadsheets, charts, and infographics (Fig. 1f, Fig. 2d, Fig. 3). 150 

Tangible Landscape runs as a Python plugin for GRASS GIS that can be extended using the 151 

GRASS Python Scripting Library and R scripting (R Core Team, 2015). System hardware 152 

include a computer, a projector, a 3D scanner, and a physical model (Petrasova et al., 2015). 153 

Laptops and portable projectors allow Tangible Landscape deployments outside of the lab. 154 

 155 

 156 

Figure 2: Participants using Tangible Landscape to designate treatment areas and limit 157 

spread of the sudden oak death (SOD) epidemic in the Upper Sonoma Valley, California. 158 

(a) Markers digitized as treatment areas, (b) a single participant 3D-sketching a treatment 159 

area using a map of oak density as a guide, (c) a group of participants collaboratively 3D-160 

sketching treatment areas using a map of California bay laurel density as a guide, and (d) a 161 

dashboard showing the cost and number of oaks saved. Available in color online. 162 
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 163 

 164 

Figure 3: Authors playing the role of local stakeholders visualizing results on Tangible 165 

Landscape and discussing implications of their collaborative management actions. 166 

Available in color online. 167 

 168 

2.1.2 A socio-ecological dilemma: The SOD epidemic in Sonoma Valley 169 

Circa 1995, conspicuous and unexplained tree mortality (Fig. 4) was observed in several 170 

locations within central-coastal California and spread to Sonoma Valley by 2000, generating a 171 

high degree of concern among the public (Rizzo and Garbelotto, 2003). Named sudden oak death 172 

(SOD) due to its rapid symptoms, the causal agent was traced to the pathogen Phytophtora 173 

ramorum. By 2013, P. ramorum had killed millions of oak (Quercus spp.) and tanoak 174 

(Notholithocarpus densiflorus) trees in California and Oregon (Cobb et al., 2013). Subsequent 175 
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studies found a complex network of transmission and about two dozen naturally occurring host 176 

species (Meentemeyer et al., 2004), including a non-terminal (i.e. not suffering mortality from 177 

disease) “super spreader” foliar host, California bay laurel (Umbellularia californica). The broad 178 

variety of host species and the environmental resilience of the pathogen makes SOD extremely 179 

difficult to manage (Frankel 2008), and the few available management options are controversial 180 

among private and public stakeholders. Treatments include tree culling via cutting or herbicide 181 

application as well as the treatment of individual stems with prophylactic antifungal chemicals 182 

(phosphates) (Garbelotto and Schmidt, 2009). These treatments are costly and chemical 183 

treatments are often politically stigmatized in California. 184 

 185 

 186 

Figure 4: Example of widespread oak mortality by sudden oak death (SOD) in the 187 

California wildlands. Available in color online. 188 

 189 

The Sonoma Valley is a mixed landscape (Fig. 5a–c) of urbanized areas and widespread 190 

agriculture, especially wine grape production, and spans private and public ownerships including 191 

state and regional parks (e.g., Jack London State Historic Park). Forested areas are a mix of open 192 
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oak (Quercus spp.) woodlands and denser mixed evergreens, with Coast redwood (Sequoia 193 

sempervirens) dominating cooler mesic drainages and north-facing slopes. California bay laurel, 194 

the most significant source of spore production and release by P. ramorum, is abundant in most 195 

forest types within the region (Meentemeyer et al., 2008). 196 

 197 

 198 

Figure 5: Views of Upper Sonoma Valley, California. a) Forest trail intermixed with open 199 

forested landscape; b) urbanized areas surrounded by forested landscape; c) mix of open 200 

oak woodlands and denser forests of mixed evergreen species. Available in color online. 201 

 202 

2.1.3 Adaptation of an epidemiological spread model 203 

  We adapted a previously validated stochastic, spatially-explicit susceptible-infected (SI) 204 

model developed to simulate the spread of the SOD pathogen P. ramorum in California 205 

(Meentemeyer et al., 2011) for use in Tangible Landscape. The raster-based model incorporates 206 

forest community structure, local weather conditions, seasonality, as well as transmission of the 207 

pathogen among host species. Increased spore production and pathogen transmission are the 208 

direct consequence of steady local moisture conditions (e.g., from consecutive days with 209 

precipitation events), thus fluctuations in local temperature and moisture conditions strongly 210 

affect outbreak patterns. With favorable weather conditions, spores are produced on the leaves of 211 

foliar hosts, such as bay laurel, and passively transmitted between trees and forest patches via 212 
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wind-blown rain and rain splashes (Davidson et al., 2005; Václavík et al., 2010). Within each 213 

cell of the model, forest composition directly affects host susceptibility and pathogen production 214 

capacities; in the Sonoma Valley study area, transmission occurs primarily via spore production 215 

and release (sporulation) on bay laurel, which does not suffer mortality or any other known 216 

negative effects from infection (Cobb et al., 2010). 217 

We adapted the simulation model to the Upper Sonoma Valley by first choosing a 1-ha 218 

(100 m x 100 m) resolution to match surveillance and field management for SOD (Valachovic et 219 

al., 2013) and partitioning the study area into a detailed lattice of contiguous 1-ha cells 220 

containing multiple susceptible and infected trees (bay laurel and oaks, Fig. 6e–f). The model 221 

was run for the interval 2000–2010 at discrete weekly time steps, using a predominant northeast 222 

wind direction typical for the chosen study area (Fig. 6a). In the model, sporulation within an 223 

infected site, the dispersal distance and direction, and the probability of successful infection of a 224 

susceptible host species are stochastic processes. The modeling framework involves a number of 225 

initial GIS layers and core sub-processes repeated at any generic time step (Appendix A). To 226 

account for uncertainty in simulation outcomes, the model was routinely run 100 times for a 227 

given scenario. Such a number represents a reasonable compromise between short computational 228 

time and higher precision in the estimated number of infected oaks, expressed as a Monte Carlo 229 

(or multi-run) average, i.e., as arithmetic mean of all simulation runs. The model was 230 

implemented in R and C++ using the Rcpp package (Eddelbuettel and Francois, 2011) and 231 

coupled with GRASS GIS through the rgrass7 package (Bivand, 2015). The source code and a 232 

set of GIS layers necessary to run our model are freely available3. 233 

 234 

                                                 
3 https://github.com/f-tonini/SOD-modeling 
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 235 

Figure 6: Data representations used in a deployment of Tangible Landscape to explore 236 

collaborative management of SOD in Upper Sonoma Valley, CA. This illustration mimics 237 

the overlay of multiple physical, human, and environmental GIS maps projected onto a 3D 238 
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physical model base. a) Relief map of the 10 km x 10 km Upper Sonoma Valley study area, 239 

noting prevailing wind direction; b) orthophoto of the region (USGS HRO 2011); c) land 240 

use map (Fry et al. 2011); d) land tenure including public roads (California Department of 241 

Parks and Recreation 2015, US Census Bureau 2015); e) Vegetative mapping of super 242 

spreader host California bay laurel (Ohmann and Gregory 2002, LEMMA 2016) and f) 243 

terminal hosts Quercus spp. (Ohmann and Gregory 2002) with first known sites of 244 

pathogen Phytophtora ramorum infection (Kelly et al. 2004). See text for details. Available 245 

in color online. 246 

 247 

For this deployment of Tangible Landscape, we used computer numeric control (CNC) 248 

machining to fabricate a 1:10,000 m scale physical model for a 10 km2 region of the Upper 249 

Sonoma Valley, onto which the GIS layers were projected (Fig. 6a). To create the physical 250 

model, we first exported a digital elevation model (DEM) of the region as a point cloud using 251 

GRASS GIS, and then generated a toolpath for CNC machining from a computed mesh. We used 252 

a 3-axis CNC router to carve a landscape topography model from a block of medium density 253 

fiberboard. The model was sanded and coated with magnetic paint so that magnetized markers 254 

would hold to its sloping topography (see Petrasova et al. 2015 for a guide to CNC machining 255 

topographic models). GIS layers (Fig. 6b–f) including orthoimagery, vegetation cover, land use 256 

and ownership, and initial sites of P. ramorum infection were projected onto the physical model, 257 

creating a contextually immersive 3D environment with information relevant to the management 258 

problem. 259 

 260 

2.2 Application 261 
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2.2.1 Choice of stakeholder types for roleplaying 262 

 We identified a diverse subset of stakeholders within the study area and categorized 263 

them into three idealized typologies for roleplay––Forest Manager, Landowner, and 264 

Conservationist––with different goals for disease containment. The Forest Manager was 265 

concerned with forest health within national and state park boundaries and motivated to manage 266 

a forest epidemic with the responsibility of maintaining public safety and biodiversity. The 267 

Landowner was not concerned with the overall size and extent of the infested areas unless the 268 

epidemic directly affected their properties; rather, they were most likely to manage disease by 269 

reducing host numbers in narrow bands on their own land, to reduce fuel accumulation for fire 270 

management. Despite the presence of multiple private properties over the area, we restricted 271 

ourselves to a single representative landowner for simplicity. The Conservationist was concerned 272 

with preservation, restoration or improvement of the natural environment, generally not in favor 273 

of deforestation, but in favor of disease management that preserved limited resources such as old 274 

growth trees and species of conservation concern. With these roles, we conducted a mock 275 

planning workshop to address the SOD epidemic in the study area. Another co-author helped 276 

players with details of the basic working principles of the spread model and provided assistance 277 

and facilitated interaction with Tangible Landscape when necessary. Although several details 278 

about the spread dynamics of an emerging infectious disease can be intuitively learned by 279 

visualizing them directly on a physical model, we acknowledge that pre-training may be 280 

necessary to provide actual stakeholders with additional information about the main processes 281 

and assumptions involved in the model. 282 

 283 

2.2.2. Rules of the roleplaying exercise 284 
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After observing the average outcome of a baseline (no treatment) simulated scenario and 285 

locations of pathogen introductions in the year 2000 (Fig. 8), the players sought to maximize the 286 

number of oaks saved by the year 2010 and to minimize management costs (total and cost per 287 

oak saved, described below). The sole control method was removal of susceptible foliar host 288 

trees, defined as 99% culling of bay laurel trees within 1-ha units. Players accomplished this by 289 

placing small wooden markers on the physical model (Fig. 2b, c; Fig. 7). When scanned, each 290 

marker generated a vector point within the GIS, and an automated algorithm digitized those 291 

points as nodes in a convex shell polygon or linear polygon representing the area, shape, and 292 

geo-referenced position of culling. Treatment polygons directed the epidemiological simulation 293 

model by reducing mapped bay laurel density in those units to 1% regardless of starting value, an 294 

action analogous to culling the trees. The sole option of culling bay laurel reflects the paucity of 295 

real-world options for controlling P. ramorum as, to date, no curative chemical treatment or 296 

comprehensive biological control has been found (Garbelotto and Schmidt, 2009; Rizzo et al., 297 

2005).  298 

 299 
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 300 

Figure 7: Disease management treatments for sudden oak death (SOD) in the field (upper) 301 

and their equivalent on Tangible Landscape (right) via culling of “super spreader” 302 

California bay laurel. In the field, culling of bay laurel trees can be achieved with hand 303 

clippers for saplings (a) or chainsaws for older trees (b). On Tangible Landscape, wooden 304 

dowels are arranged in order to enclose areas where culling treatments are needed. 305 

Available in color online. 306 

 307 

 308 
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Figure 8: Number of infected oaks predicted by a baseline (no treatment) simulated 309 

scenario between 2000 and 2010. The chosen geographical extent matches the smaller area 310 

outlined on the physical model, Fig. 1. Values are averaged over 100 model runs. Darker 311 

values correspond to higher oak mortality: by 2007, a total of 430 oaks were expected to 312 

die, and by 2010 a total of 2770. Available in color online. 313 

 314 

Players could cull up to a total of 62 ha (≈ 150 ac) per simulation, acknowledging the 315 

real-world limitation that treatments in excess of this amount require a lengthy and costly 316 

application process as part of the California Environmental Quality Act (CEQA) or National 317 

Environmental Policy Act (NEPA) (Buck, 1991). We based the estimated costs of culling on 318 

those associated with a trial treatment at the University of California Big Creek Reserve, where 319 

99% of bay laurel was culled from 1 ha with a crew of 16 people. Site planning by personnel had 320 

included locating suitable sites using aerial orthophotography, scouting, and purchasing materials 321 

to locate plot centers and boundaries; hand culling of bay laurel had required 13 person hours per 322 

1% cover. Disregarding capital costs (e.g., purchase of chainsaws) and transportation expense to 323 

and from the site, we arrived at the following formula to use in the model: 324 

  325 

Cost ($ USD)/ha = (Relative cover in whole numbers/ha x 13.0 person hours x $18.00/person 326 

hour) + $800 planning fee. 327 

  328 

After examining the average outcome of a baseline (no treatment) simulated scenario 329 

2000–2010 (Fig. 8), players were allowed three trials to individually create a management 330 

strategy, and the epidemiological model was run after each trial to generate maps of infection 331 
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outcomes by 2010. These maps were projected onto the physical model (Fig. 2d, Fig. 3) and used 332 

for comparison with the no-treatment scenario. A graphic dashboard further tracked oaks saved 333 

and costs (Fig. 2a, d; Fig 3), providing feedback of how management decisions influenced the 334 

simulated spread of the disease. Near-instant feedback after each trial provided opportunities for 335 

the players to test placement of culling. For each player, we quantified the average amount of 336 

infected oaks for each grid cell and the average amount of total infected area (i.e., infected bay 337 

laurel and oaks), as well as the cost of treatments (total and per tree saved). The three players 338 

performed treatments and viewed outcomes in the presence of all other participants, allowing co-339 

learning. After each player performed three trials, we worked together for three trials as a 340 

collaborative team. We then compared individual participant results with those of the group. 341 

 342 

3. Results  343 

3.1. Outcomes of simulated management 344 

Forest Manager was the first player to deploy a strategy and noticed in the no-treatment 345 

scenario that little oak mortality was predicted to occur near the easternmost initial infection site; 346 

so they placed treatments close to the southwestern foci (Fig. 1f). Concerned with park 347 

management, they chose to cull bay laurel from groves of oaks near frequently visited state park 348 

trails and entrances. On average, these simulated management actions saved 68 oaks per hectare 349 

(Fig. 9a) and a total of 400 oak trees over the entire study area (Fig. 10) at a cost of $251,759 350 

USD, or $693 per oak (Table 1).  351 

Landowner deployed their strategy next and restricted culling to linear treatments along 352 

minor roads bordering their private property, reflecting legacy management behaviors that 353 

emphasize managing fuel accumulation as part of a rural fire protection program. The simulation 354 
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demonstrated, however, that establishing defensible space along property boundaries did not 355 

control the spread of P. ramorum. Management away from the three infection foci, in areas with 356 

little bay laurel near personal property, had no significant impact on preventing oak mortality 357 

ahead of the culling treatments (Fig. 9b, Fig. 10, Appendix B). Despite a lower overall cost 358 

($190,158), this treatment produced a high average cost per saved oak due to the negligible 359 

number of oaks saved from mortality (Table 1). 360 

After observing the strategies of Forest Manager and Landowner, Conservationist 361 

decided to use a containment strategy typical of reactive culling (i.e., culling of all host species 362 

around detected infection sites, in this case bay laurel). This was the most successful approach 363 

among the players, with an average of 189 oaks saved per hectare, about 2,000 trees saved over 364 

the entire study area (Fig. 9c, Fig. 10, Appendix B), and a cost of $159 per oak saved (Table 1). 365 

High overall treatment costs were compensated by the large number of oaks saved from 366 

mortality, thus lowering the average cost per saved oak (Table 1). Despite targeted culling 367 

around infection foci, the pathogen was still able to spread beyond the treated areas due to small 368 

amounts (1%) of remaining bay laurel and the occurrence of long-distance dispersal events. This 369 

is analogous to real-world evidence that even under the best practices P. ramorum is rarely 370 

eradicated, with success rates often measured in terms of the degree to which disease outbreaks 371 

are slowed down. 372 

For the final series of simulations, the three players collaboratively designed a 373 

management strategy (Fig. 3). By observing the outcomes of previous strategies, we learned that 374 

treatments near individually valued resources, such as oak groves or properties, did not perform 375 

as well as targeted reactive culling approaches meant to contain the disease at its origins, 376 

regardless of land ownership. The resulting collaborative effort led to a high average number of 377 
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oaks saved per hectare as well as total amount saved over the study area (Fig. 9d, Fig. 10, 378 

Appendix B). Total overall costs and average cost per oak saved were similar to that observed 379 

for Conservationist. Although the spatial configuration of areas partially saved from the disease 380 

was similar between the collaboration exercise and Conservationist (Fig. 9c–d), the 381 

Conservationist’s strategy saved more oaks per weekly time step than the collaborative strategy 382 

(Fig. 10), ultimately resulting in more total oaks saved. This was likely due to the cumulative 383 

effect of slower disease spread in the first years of simulation as pathogen accumulation was 384 

reduced by targeted treatments around the three initial infection foci. 385 

 386 

Table 1. Treatment outcomes and costs associated with disease management scenarios 387 

implemented by roleplaying, individually and collaboratively. 388 

Stakeholder 

typology 

Trial Treatment 

size 

(ha) 

Saved 

oaks 

(average) 

Cost 

(USD)a 

Price per 

saved oak 

(average) a 

Forest manager  1 62 51 $187,382 $3,680 

 2 b 59 363 $251,759 $693 

 3 62 8 $249,377 $29,973 

Landowner 1 57 43 $274,945 $6,359 

 2 52 104 $190,158 $1,822 

 3 b 60 73 $280,857 $3,865 

Conservationist  1 b 62 1991 $315,863 $159 

 2 59 236 $300,862 $1,276 

 3 61 1270 $480,678 $378 

Collaboration 1 61 1196 $326,528 $273 
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 2 * 62 1275 $315,371 $225 

 3 62 615 $334,937 $545 

a Costs were calculated based on site planning, labor, materials, and transportation necessary for 389 

culling treatments (see formula in Rules of the roleplaying exercise section). Costs per saved oak 390 

are averaged over 100 model runs. Lowest costs within each stakeholder typology are in bold. 391 

b Shown in Figures 9–10 392 

 393 

 394 

Figure 9: Number of oaks saved from mortality compared to the baseline (no treatment) 395 

scenario between 2000 and 2010. The color ramp is the same for all maps: legends show 396 

minimum and maximum values for the specific simulation year and trial.  The small 397 
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negative values are caused by residual stochastic differences between average outcomes of 398 

the baseline (no treatment) and the management scenarios under consideration. (a) Forest 399 

Manager with treatments centered on trails, campgrounds, and other high-use areas within 400 

state parks boundaries, (b) Landowner with treatments along roads, (c) Conservationist 401 

with treatments placed around initial known foci of infection (red squares), and (d) 402 

collaborative action, with treatments placed according to shared interests. Values represent 403 

per-pixel averages over 100 model runs. The chosen geographical extent matches the 404 

smaller area outlined on the physical model, Fig. 6a. Only the most successful trial for each 405 

category is shown. Available in color online. 406 

 407 

 408 

Figure 10: Total number of oaks saved from mortality over the entire study area compared 409 

to a baseline (no treatment) simulated scenario between 2000 and 2010. Lines represent 410 

averages over 100 model runs, enclosed by their Monte Carlo confidence interval (shaded 411 

areas). Available in color online. 412 

 413 

4. Discussion 414 
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For the first time, we demonstrated how a 3D interface such as Tangible Landscape can 415 

facilitate decision-making among management stakeholders with different initial objectives 416 

collectively facing the spread of an invasive plant pathogen. In this pilot exercise, we deployed a 417 

real-world epidemiological model using Tangible Landscape and compared individual and 418 

collaborative performances for decreasing the spread of sudden oak death. When working 419 

together, players compromised where they would each prefer to enact management in order to 420 

maximize the overall number of oaks saved. We found that directing computation by simply 421 

placing markers on a 3D physical model of the study system enabled us to quickly and easily 422 

explore management alternatives and engage in active discussions while evaluating “what-if” 423 

scenarios. The near-real time assessment of alternative management interventions inspired 424 

discussion and co-learning, thus building consensus when making decisions.  425 

The Tangible Landscape framework constitutes a novel methodology designed to bridge 426 

the knowledge-practice gap and make model-based research actionable. In translating the spread 427 

model to Tangible Landscape, we considered how participants might interact with and 428 

manipulate the driving parameters. For example, recognizing weather as a key SOD spread 429 

driver beyond human control, we held climatic parameters constant and instead allowed 430 

participants to alter the abundance host density via culling treatments. Further, we developed and 431 

reported metrics relevant to stakeholders groups (e.g. treatment costs based on host density and 432 

labor), not just researchers, to ease the communication of trade-offs associated with alternative 433 

management strategies.  434 

 435 

4.1. Lessons learned from roleplay 436 
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Using Tangible Landscape, we were able to explore some of the substantial challenges 437 

facing those charged with managing SOD. A key question, acknowledging the generalist nature 438 

of P. ramorum, was whether it was more effective to deploy preemptive treatments downwind 439 

from the sites of known introduction or attempt to contain the disease at its source (Cunniffe et 440 

al., 2016; Filipe et al., 2012; Hansen et al., 2008). In our case study, the Conservationist’s 441 

management strategies aimed at culling the reservoir host solely around the three known 442 

infection foci (Fig. 9c) did not contain the spread of the disease, most likely due to the practical 443 

impossibility of fully removing the reservoir host. The containment strategy did, however, slow 444 

down the disease in the short term and reduce overall oak mortality (Fig. 10). The location and 445 

spatial extents of areas saved from the disease were similar between Conservationist’s approach 446 

and the alternative collaborative strategy (Fig. 9d). The latter resulted in slightly higher costs but 447 

brought a high degree of realism to the management effort by considering the necessary trade-448 

offs and multiple local interests involved (Cobb et al., 2013b; Rizzo et al., 2005). 449 

In order to develop collaborative strategies, management practices initially favored by 450 

representative interest groups (i.e., Landowner, Forest Manager, and Conservationist) were 451 

modified, abandoned, or exchanged to accommodate competing interests. For example, 452 

participants noticed that treatments placed around the easternmost infected site (see 453 

Conservationist, Fig. 9c) had little to no effect on reducing oak mortality in the surrounding 454 

areas. As a consequence, ~10 ha of land were re-allocated near the central portion of the study 455 

area to prevent part of the disease outbreak projected to hit by year 2010 (Fig. 8) should no 456 

management action be taken. Landowner abandoned linear road treatments after seeing how the 457 

investment did not save many trees. Forest Manager re-allocated 20 ha of treatments in order to 458 

better protect oak groves downwind from the central source of infection (Fig. 9d), while 459 
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accommodating the treatment area originally placed by Conservationist around the same infected 460 

site. Although a single individually developed strategy (as seen here by Conservationist) might 461 

achieve the best outcome in terms of number of oaks saved (Fig. 9c, Fig. 10), the overall 462 

treatment costs can easily exceed those of a carefully planned collaborative strategy (Table 1; 463 

Hansen et al. 2008). 464 

 465 

4.2. Technical considerations 466 

This pilot application of Tangible Landscape to a management planning scenario 467 

revealed technical challenges for us to address. In particular, the variability observed between 468 

stochastic runs of the same scenario (Fig. 10) still leaves an open question concerning the 469 

optimal compromise between model replications and computational burden. The three main 470 

components implemented in the epidemiological model (i.e. sporulation, dispersal, infection) are 471 

stochastic processes in which differences between any two simulations can grow between 472 

successive time steps, and sometimes even lead to snowballing divergences. The presence of 473 

small positive and negative values in the Landowner strategy (Fig. 9b) exemplifies this problem. 474 

Increasing the number of model replications leads to a more accurate average outcome while 475 

reducing variability and accounting for a range of extreme possibilities (Monte Carlo 476 

simulation). However, the purpose of Tangible Landscape is to offer the user a near real-time 477 

interaction with the physical model and the layers of spatial information projected onto it, thus 478 

necessitating a reduced computational burden (Petrasova et al., 2015). A method to deal with 479 

large numbers of independent model runs may be to launch them in parallel on multiple 480 

processors possibly on a remote infrastructure. The results would then be averaged into a single 481 

outcome and presented to stakeholders. In the future, we intend to explore computational 482 
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improvements that could enable inclusion of multiple adaptive disease interventions through 483 

time in Tangible Landscape. 484 

 485 

5. Conclusions  486 

Our pilot exercise demonstrated the potential for Tangible Landscape to run a responsive 487 

epidemiological model with user input through an easy-to-use 3D interface. Our next step for 488 

exploring collaborative decision-making with Tangible Landscape is to deploy this model in a 489 

real-world setting out of the lab, with real stakeholders that include private citizens and 490 

representatives from state and national government agencies, academia, and industry, exploring 491 

control scenarios for the SOD epidemic in a focal area of pressing concern. As we observed in 492 

our pilot study, we expect that the participatory tangible modeling environment will empower 493 

stakeholders to experiment, granting them freedom to make mistakes, evaluate outcomes, and 494 

negotiate costs and benefits in order to reach individual and collective objectives.  495 

Our mock planning workshop illustrated some of the challenges of uniting multiple 496 

stakeholders with overlapping jurisdictional boundaries and exposed some of the difficult trade-497 

offs required to arrive at consensus in management decisions. We predict that in a real-world 498 

setting, several technical and visual advantages of Tangible Landscape will help reduce barriers 499 

between participants with varying objectives and types of expertise: Tangible Landscape 500 

provides the degree of information density and realism needed for participants to 1) quickly and 501 

intuitively learn the salient details and dynamics of a complex epidemiological spread model, 2) 502 

virtually place themselves into a landscape they know and care about and allow their decision 503 

making to be geographically and contextually informed, 3) quickly develop and test management 504 

strategies, often by observing and learning from each other, and 4) receive near-real time 505 
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feedback as to the efficacy of their actions over time. This leads us to suggest that customized 506 

deployments of Tangible Landscape will facilitate understanding, interpretation, and 507 

compromise when examining complex ecological interactions and potential solutions for 508 

management. 509 

 510 

Acknowledgments 511 

  512 

The authors thank all members of the Meentemeyer Landscape Dynamics Lab at the Center for 513 

Geospatial Analytics for their feedback and valuable suggestions on the present work; we also 514 

thank M. Skrip for editorial assistance. This research was supported by the National Science 515 

Foundation [grant numbers DEB-EF-0622677 and EF-0622770] as part of the joint NSF–NIH 516 

Ecology of Infectious Disease program. All authors made substantial contributions to this work 517 

in the following areas: As first author, Francesco Tonini led and coordinated the study presented 518 

herein, alongside with code development for the stochastic epidemiological model. Douglas 519 

Shoemaker and Anna Petrasova equally contributed to this study and project development. D.S. 520 

helped with extensive editing, structuring, and writing, while A.P. helped in code development, 521 

computation of model outcomes, as well as in editing; Brendan Harmon in project development 522 

assistance, writing of the Tangible Landscape section, and figure editing; Vaclav Petras in code 523 

and project development assistance; Richard Cobb in contributing to Appendix A and editing of 524 

the present research article; Helena Mitasova in editing of the present article and original design 525 

of Tangible geospatial modeling system; and finally Ross Meentemeyer in project development 526 

and editing of the present article.      527 

 528 



29 

Literature Cited 529 

 530 

Bayliss, H., Stewart, G., Wilcox, A., Randall, N. 2013. A perceived gap between invasive 531 

species research and stakeholder priorities. NeoBiota 19, 67–82. 532 

doi:10.3897/neobiota.19.4897 533 

Bivand, R. 2015. rgrass7: Interface Between GRASS 7 Geographical Information System and R. 534 

R package version 0.1-0. 535 

Buck, S. 1991. Understanding environmental administration and law. Island Press, Washington, 536 

D.C., USA. 537 

California Department of Parks and Recreation. 2015. California State Parks System Map. 538 

http://www.parks.ca.gov/. 539 

Cabin, R.J., Clewell, A., Ingram, M., McDonald, T., Temperton, V. 2010. Bridging restoration 540 

science and practice: results and analysis of a survey from the 2009 Society for 541 

Ecological Restoration International Meeting. Restor. Ecol. 18(6), 783–788. 542 

doi:10.1111/j.1526-100X.2010.00743.x 543 

Cobb, R.C., Meentemeyer, R.K., Rizzo, D.M. 2010. Apparent competition in canopy trees 544 

determined by pathogen transmission rather than susceptibility. Ecol. 91, 327–333. 545 

Cobb, R.C., Eviner, V.T., Rizzo, D.M. 2013a. Mortality and community changes drive sudden 546 

oak death impacts on litterfall and soil nitrogen cycling. New Phytol. 200, 422–431. 547 

Cobb, R.C., Rizzo, D.M., Hayden, K.J., Garbelotto, M., Filipe, J.A.N., Gilligan, C.A., Dillon, 548 

W.W., Meentemeyer, R.K., Valachovic, Y.S., Goheen, E., Swiecki, T.J., Hansen, E. M., 549 

Frankel, S.J. 2013b. Biodiversity conservation in the face of dramatic forest disease: An 550 



30 

integrated conservation strategy for tanoak (Notholithocarpus densiflorus) threatened by 551 

sudden oak death. Madroño 60, 151–164. 552 

Colella, V. 2000. Participatory simulations: building collaborative understanding through 553 

immersive dynamic modeling. J. Learning Sci. 9, 471–500. 554 

Cunniffe, N.J., Cobb, R.C., Meentemeyer, R.K., Rizzo, D.M., Gilligan, C.A. 2016. Modeling 555 

when, where, and how to manage a forest epidemic, motivated by sudden oak death in 556 

California. Proc. Natl. Acad. Sci. 113(20), 5640–5645. 557 

Daszak, P. 2000. Emerging infectious diseases of wildlife—threats to biodiversity and human 558 

health. Sci. 287, 443–449. 559 

Davidson, J.M., Wickland, A.C., Patterson, H.A., Falk, K.R., Rizzo, D.M. 2005. Transmission of 560 

Phytophthora ramorum in mixed-evergreen forest in California. Phytopathol. 95, 587–561 

596. 562 

Eddelbuettel, D., Francois, R. 2011. Rcpp: Seamless R and C++ integration. J. Stat. Softw. 40, 563 

1–18. 564 

Epanchin-Niell, R.S., Hufford, M.B., Aslan, C.E., Sexton, J.P., Port, J.D., Waring, T.M. 2009. 565 

Controlling invasive species in complex social landscapes. Front. Ecol. Environ. 8, 210–566 

216. 567 

Esler, K.J., Prozesky, H., Sharma, G.P., McGeoch, M. 2010. How wide is the “knowing-doing” 568 

gap in invasion biology? Biol. Inv. 12(12), 4065–4075. doi:10.1007/s10530-010-9812-x. 569 

Filipe, J.A.N., Cobb, R.C., Meentemeyer, R.K., Lee, C.A., Valachovic, Y.S., Cook, A.R., Rizzo, 570 

D.M, Gilligan, C.A. 2012. Landscape epidemiology and control of pathogens with 571 

cryptic and long-distance dispersal: sudden oak death in northern Californian forests. 572 

PLoS Comp. Biol. 8:e1002328. 573 



31 

Frankel, S.J. 2008. Sudden oak death and Phytophthora ramorum in the USA: a management 574 

challenge. Australas. Plant Pathol. 37:19. 575 

Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., Barnes, C., Herold, N., Wickham, J. 576 

2011. Completion of the 2006 National Land Cover Database for the Conterminous 577 

United States. PE&RS 77, 858–864. 578 

Garbelotto, M., Schmidt, D. 2009. Phosphonate controls sudden oak death pathogen for up to 2 579 

years. Calif. Agric. 63, 10–17. 580 

Hansen, E.M., Kanaskie, A., Prospero, S., McWilliams, M., Goheen, E.M., Osterbauer, N., 581 

Reeser, P., Sutton, W. 2008. Epidemiology of Phytophthora ramorum in Oregon tanoak 582 

forests. Can. J. For. Res. 38, 1133–1143. 583 

Hatcher, M.J., Dick, J.T., Dunn, A.M. 2012. Diverse effects of parasites in ecosystems: linking 584 

interdependent processes. Front. Ecol. Environ. 10, 186–194. 585 

Kelly, M., Tuxen, K., Kearns, F. 2004. Geospatial informatics for management of a new forest 586 

disease: sudden oak death. Photogramm. Eng. Remote Sens. 70, 1001–1004. 587 

Kilpatrick, A.M., Briggs, C.J., Daszak, P. 2010. The ecology and impact of chytridiomycosis: an 588 

emerging disease of amphibians. Trends Ecol. Evol. 25, 109–18. 589 

Kueffer, C., Hadorn, G.H. 2008. How to achieve effectiveness in problem-oriented landscape 590 

research: the example of research on biotic invasions. Landsc. Res. 2, 49. 591 

doi:10.12942/lrlr-2008-2 592 

LEMMA. 2016. Landscape Ecology, Modeling, Mapping & Analysis. 593 

http://lemma.forestry.oregonstate.edu/. 594 

Lovett, G.M., Weiss, M., Liebhold, A.M., Holmes, T.P., Leung, B., Lambert, K.F., Orwig,  D.A, 595 

Campbell, F.T., Rosenthal, J., McCullough, D.G., Wildova, R., Ayres, M.P., Canham, 596 



32 

C.D., Foster, D.R., LaDeau, S.L., Weldy, T. 2016. Nonnative forest insects and 597 

pathogens in the United States: Impacts and policy options. Ecol. Appl. 26(5), 1437–598 

1455. doi: 10.1890/15-1176 599 

Matzek, V., Covino, J., Funk, J.L., Saunders, M. 2014. Closing the knowing-doing gap in 600 

invasive plant management: accessibility and interdisciplinarity of scientific research. 601 

Conserv. Lett. 7(3), 208–215. doi:10.1111/conl.12042 602 

Matzek, V., Pujalet, M., Cresci, S. 2015. What managers want from invasive species research 603 

versus what they get. Conserv. Lett. 8(1), 33–40. doi:10.1111/conl.12119 604 

McCown, R.L. 2001. Learning to bridge the gap between science-based decision support and the 605 

practice of farming: Evolution in paradigms of model-based research and intervention 606 

from design to dialogue. Aust. J. Agric. Res. 52(5), 549–571. doi:10.1071/AR00119 607 

Meentemeyer, R.K., Rizzo, D., Mark, W., Lotz, E. 2004. Mapping the risk of establishment and 608 

spread of sudden oak death in California. For. Ecol. Manag. 200, 195–214 609 

Meentemeyer, R.K., Anacker, B.L., Mark, W., Rizzo, D.M. 2008. Early detection of emerging 610 

forest disease using dispersal estimation and ecological niche modeling. Ecol. Appl. 18, 611 

377–390. 612 

Meentemeyer, R.K., Cunniffe, N.J., Cook, A.R., Filipe, J.A.N., Hunter, R.D., Rizzo, D.M., 613 

Gilligan, C.A. 2011. Epidemiological modeling of invasion in heterogeneous landscapes: 614 

spread of sudden oak death in California (1990–2030). Ecosphere 2(2), 1–24. 615 

Meentemeyer, R.K., Dorning, M.A., Vogler, J.B., Schmidt, D., Garbelotto, M. 2015. Citizen 616 

science helps predict risk of emerging infectious disease. Front. Ecol. Environ. 13, 189–617 

194. 618 



33 

Ohmann, J.L., Gregory, M.J. 2002. Predictive mapping of forest composition and structure with 619 

direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. Can. 620 

J. For. Res. 32, 725–741. 621 

Perera, A., Buse, A., Crow, T. 2006. Knowledge transfer in forest landscape ecology: a primer, 622 

in: Perera, A., Buse, L., Crow, T. (Eds), For. Lands. Ecol. Transferring knowledge into 623 

practice. Springer New York, New York, pp. 1–18. 624 

Petrasova, A., Harmon, B., Petras, V., Mitasova, H. 2014. GIS-based environmental modeling 625 

with tangible interaction and dynamic visualization. in D. Ames and N. Quinn, editors. 626 

7th International Congress on Environmental Modelling and Software. Int. Environ. 627 

Model. Softw. Soc., San Diego, CA, USA. 628 

Petrasova, A., Harmon, B., Petras, V., Mitasova, H. 2015. Tangible Modeling with Open Source 629 

GIS. First ed. Springer International Publishing. 630 

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for 631 

Statistical Computing, Vienna, Austria. 632 

Reed, M.S. 2008. Stakeholder participation for environmental management: a literature review. 633 

Biol. Conserv. 141, 2417–2431. 634 

Ricciardi, A., Palmer, M.E., Yan, N.D. 2011. Should biological invasions be managed as natural 635 

disasters? BioScience 61(4), 312–317. doi:10.1525/bio.2011.61.4.11 636 

Rizzo, D.M., Garbelotto, M. 2003. Sudden oak death: endangering California and Oregon forest 637 

ecosystems. Front. Ecol. Environ. 1, 197–204. 638 

Rizzo, D.M., Garbelotto, M., Hansen, E.M. 2005. Phytophthora ramorum: integrative research 639 

and management of an emerging pathogen in California and Oregon forests. Ann. Rev. 640 

Phytopathol. 43, 309–335. 641 



34 

Simberloff, D., Parker, I.M., Windle, P.N. 2005. Introduced species policy, management, and 642 

future research needs. Front. Ecol. Environ. 3(1), 12–20. doi:10.1890/1540-643 

9295(2005)003[0012:ISPMAF]2.0.CO;2 644 

Stokes, K.E., O’Neill, K.P., Montgomery, W.I., Dick, J.T.A., Maggs, C.A., Mcdonald, R.A. 645 

2006. The importance of stakeholder engagement in invasive species management: a 646 

cross-jurisdictional perspective in Ireland. Biodivers. Conserv. 15(8), 2829–2852. 647 

doi:10.1007/s10531-005-3137-6 648 

Tateosian, L., Mitasova, H., Harmon, B.A., Fogleman, B., Weaver, K., Harmon, R.S. 2010. 649 

TanGeoMS: tangible geospatial modeling system. IEEE Trans. Vis. Comp. Gr. 16, 1605–650 

1612. 651 

US Census Bureau. 2015. TIGER/Line: Topologically Integrated Geographic Encoding and 652 

Referencing. https://www.census.gov/geo/maps-data/data/tiger-line.html. 653 

USGS HRO. 2011. USGS High Resolution Orthoimagery (HRO). 654 

http://gisdata.usgs.gov/services.php. 655 

Václavík, T., Kanaskie, A., Hansen, E.M., Ohmann, J.L., Meentemeyer, R.K. 2010. Predicting 656 

potential and actual distribution of sudden oak death in Oregon: prioritizing landscape 657 

contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260, 658 

1026–1035. 659 

Valachovic, Y., Quinn-Davidson, E., Goldsworthy, L., Cannon, P. 2013. Novel approaches to 660 

SOD management in California wildlands: A case study of “eradication” and 661 

collaboration in Redwood Valley, in: Frankel, S.J., Kliejunas, J.T., Palmieri, K.M, 662 

Alexander, J.M. (Eds.), Proc. Sudden Oak Death Fifth Sci. Symposium. Gen. Tech. Rep. 663 



35 

PSW-GTR-243. U.S. Department of Agriculture, Forest Service, Pacific Southwest 664 

Research Station, Albany, California, USA., pp. 99–107. 665 

Voinov, A., Bousquet, F. 2010. Modelling with stakeholders. Environ. Model. Softw. 25, 1268–666 

1281. 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 



36 

Appendix A. 687 

  688 

Vegetation Maps 689 

We derived tree densities from detailed GIS structure (species-size) maps from the Landscape 690 

Ecology, Modeling, Mapping & Analysis (LEMMA) project webpage (Ohmann and Gregory 691 

2002; http://lemma.forestry.oregonstate.edu/). Tree densities (per hectare) for bay laurel and oak 692 

species of interest (coast live oak, black oak, canyon live oak) were calculated using the live tree 693 

density attribute (TPH_GE_3) multiplied by fractions of total basal area (BA_GE_3) as follows: 694 

 695 

where the index K indicates the species of interest and BA indicates basal area (m2/ha). This 696 

resulted in maps of oak and bay laurel density (Fig. 6e and f, respectively) that informed 697 

stakeholders as to the location of susceptible tree populations and super-spreaders of P. 698 

ramorum, aiding the development of management strategies. 699 

  700 

Initial Disease Records 701 

To initiate the model, we used empirical records of the disease collected in three different 702 

appelocations within the study area (Fig. 6f) around year 2000. These records include plot-level 703 

data on P. ramorum incidence collected by Phytosphere Research and the California Oak 704 

Mortality Task Force (Kelly et al. 2004), which reports infections confirmed by the California 705 

Department of Food and Agriculture (Meentemeyer et al. 2008). 706 

  707 

Weather Conditions and Seasonality 708 
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Fluctuations in temperature and moisture conditions strongly affect sporulation rates and 709 

transmission of P. ramorum in forests (Davidson et al. 2005, Václavík et al. 2010). Specifically, 710 

increased pathogen production is the direct consequence of steady local moisture conditions (e.g. 711 

from consecutive days with precipitation events) that coincide with mild temperatures. These 712 

conditions are typical of spring precipitation events in the study region. In this work, we used 713 

weekly maps of weather condition indices derived from average temperature and consecutive 714 

days of precipitation as described in Meentemeyer et al. (2011). The combined index is defined 715 

in [0, 1], where zero corresponds to unsuitable conditions for spore production and transmission. 716 

Seasonality is included in the model by restricting pathogen spread and infection in forests 717 

between the months of January and September, following the start of the rainy season in 718 

California’s Mediterranean climate. 719 

  720 

Sporulation and Pathogen Dispersal   721 

The amount of spores produced each week within each infected site is sampled from a Poisson 722 

distribution with rate equal to 4.4 spores/week as calibrated in Meentemeyer et al. (2011). This 723 

rate corresponds to the maximum expected number of spores an infectious host can produce if 724 

weather conditions were most suitable. Weather conditions affect sporulation by reducing the 725 

amount of spores produced through a low value of the weather condition index. Pathogen 726 

intensification and transmission are controlled by a probabilistic kernel that describes the spatial 727 

spread over short distances (≤ 1 km) as well as occasional jumps (1-100 km) caused by 728 

anthropogenic activity (Rizzo et al. 2005). Although SOD is a “spillover” disease, where 729 

outbreaks on oaks are caused by transmission of the pathogen from foliar hosts in close-730 

proximity, it is crucial to account for occasional long-range dispersal events. In fact, these types 731 
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of rare jumps ultimately drive pathogen spread over regional extents, complicating the 732 

implementation of effective management and control strategies for invasive species (Frankel 733 

2008). Further, because wind-driven rain is thought to be a major dispersal process at local scales 734 

(Rizzo et al. 2005), we considered wind direction as an additional component to the spread 735 

model. In contrast with Meentemeyer et al. (2011), we used a particle-emission anisotropic 736 

reformulation of the dispersal kernel: the spores produced within each infected cell of the 737 

landscape are dispersed in a direction sampled from a Von Mises circular probability distribution 738 

on [0, 2π) by a distance distributed according to the dispersal kernel. The predominant wind 739 

direction for the study area (Northeast = 45 degrees or ≈ 0.78 rad) was used to parameterize the 740 

mean of the angular distribution and we set its concentration value equal to 2 (k = 2). The 741 

dispersal distance was sampled from a Cauchy probability distribution parameterized with values 742 

from Meentemeyer et al. (2011). Because the study area is relatively small (10 km x 10 km), in 743 

this work we ignored the long-distance component of the dispersal kernel. 744 

  745 

Infection   746 

Susceptible host species are probabilistically challenged for infection by the pathogen 747 

proportionally to their density and adjusted by a variable indicating the suitability of weather 748 

conditions. Transmission and mortality are independent processes within the model which 749 

provides the flexibility to reflect the epidemiology of this disease in real forests. For example, 750 

the parameter values for bay laurel provide relatively high rates of sporulation on bay laurel with 751 

mortality rates set to zero. In contrast, transmission is set to zero for oaks, but mortality is the 752 

greatest relative to other species within the host landscape. Spread of infection is approximated 753 

as a function describing the probability of infection p(I) given spatial location - distance and 754 
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angle from infection at the previous time step - climate factors, and sporulation rate. Changes in 755 

probability of dispersal of new infections is included as a Cauchy distribution conditioned on 756 

distance to the target cell. Within cell infection is allowed across bay laurel and oak species 757 

while dispersal outside of the cell is to bay laurel only. These rules are consistent with spatially 758 

extensive datasets on pathogen spread. 759 

Within cell infection (d < 1) is taken as: 760 

 761 

where beta is a species (i) and location (j) specific rate of new potential infections per species. 762 

This introduces independence between acquisition of infection and transmission. Species with 763 

beta = 0 can acquire but cannot transmit infection which, in this case, would represent oak 764 

species. The probability of new infections is dependent on the susceptible population size (S) and 765 

the suitability of weather conditions (w). Dispersal outside of target cell follows a similar 766 

construction but restricted to acquisition of infections in bay laurel and adjustments for spatial 767 

relationships: 768 

 769 

 770 

Where theta is a standard normal Cauchy probability distribution and phi is a function describing 771 

the effect of wind velocity (v) and direction (δ). This takes the form: 772 

 773 
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which provides the additional flexibility to restrict dispersal direction according to dominant 774 

storm tracks and observed dominant dispersal directions.  775 
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Appendix B. 797 

 798 
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Figure B.1: Number of oaks saved from mortality by each player in multiple attempts, 799 

compared to the baseline (no treatment) simulated scenario between 2000 and 2010. The 800 

color ramp is the same for all maps: legends show minimum and maximum values for the 801 

specific simulation year and trial.  The small negative values are caused by residual 802 

stochastic differences between average outcomes of the baseline (no treatment) and the 803 

management scenarios under consideration. Initial known foci of infection are shown (red 804 

squares). Values represent per-pixel averages over 100 model runs. The chosen 805 

geographical extent matches the smaller area outlined on the physical model, Fig. 6a. 806 

Available in color online. 807 


