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Abstract 14 

Scientists and land managers are increasingly monitoring forest microclimate environments to 15 

better understand ecosystem processes, such as carbon sequestration and the population 16 

dynamics of species. Obtaining reliable time-series measurements of microclimate conditions is 17 

often hindered by missing and erroneous values. In this study, we compare spatio-temporal 18 

techniques, space-time kriging (probabilistic) and empirical orthogonal functions (deterministic), 19 

for reconstructing hourly time series of near-surface air temperature recorded by a dense network 20 

of 200 forest understory sensors across a heterogeneous 349 km² region in northern California. 21 

The reconstructed data were also aggregated to daily mean, minimum, and maximum in order to 22 

understand the sensitivity of model predictions to temporal scale of measurement. Empirical 23 

orthogonal functions performed best at both the hourly and daily time scale. We analyzed several 24 

scenarios to understand the effects that spatial coverage and patterns of missing data may have 25 
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on model accuracy: (a) random reduction of the sample size/density by 25%, 50%, and 75% 26 

(spatial coverage); and (b) random removal of either 50% of the data, or three consecutive 27 

months of observations at randomly chosen stations (random and seasonal temporal missingness, 28 

respectively). Here, space-time kriging was less sensitive to scenarios of spatial coverage, but 29 

more sensitive to temporal missingness, with less marked differences between the two 30 

approaches when data were aggregated on a daily time scale. This research contextualizes trade-31 

offs between techniques and provides practical guidelines, with free source code, for filling data 32 

gaps depending on the spatial density and coverage of measurements. 33 
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1. Introduction 52 

 53 

The availability of complete long-term, high-resolution datasets of climatic conditions 54 

measured near the earth’s surface is crucial for understanding ecological processes affected by 55 

environmental heterogeneity (McDonald and Urban, 2004; Meentemeyer, 1978; Turner and 56 

Chapin, 2005; Waring and Running, 1998). Fluctuations in these microclimate (Geiger, 1965) 57 

conditions may influence processes such as the dynamic evolution of an infectious disease in 58 

natural ecosystems (Meentemeyer et al., 2012), species distributions (Gehlhausen et al., 2000), 59 

and the structure of landscape patterns of carbon and nutrient cycling (Band et al., 1991). In 60 

forest ecosystems, weather conditions have historically been measured either at insufficient 61 

spatial densities to capture landscape-level variation in microclimate (Lookingbill and Urban, 62 

2003) or at a “representative” site often cleared of vegetation (Bolstad et al., 1998). 63 

Technological advancements have led to high resolution data sets becoming more affordable and 64 

common, but this has produced a fresh challenge. Even when high-resolution meteorological and 65 

hydrologic observational datasets are obtained they are frequently beset with periods of missing 66 

data caused by the failure of data loggers (e.g. due to power outages), climatological events (e.g. 67 

snow, ice, or precipitation) (Henn et al., 2013), and even cattle interference (personal 68 

observation). In other cases, erroneous or unreasonable values are recorded and must be 69 

manually removed. Establishing effective and efficient methods for predicting microclimate 70 

conditions to fill in these gaps will increase the utility of these datasets for examining thresholds 71 

governing ecological dynamics at fine spatial and temporal scales. 72 

Accurately filling in the missing data at fine spatial and temporal resolutions provide the 73 

necessary detail for modeling organisms that interact, but may respond differently to similar 74 



environmental conditions (e.g. a plant pathogen versus its host). A complete data set also allows 75 

for examination and testing of environmental thresholds under natural conditions. For example, 76 

the number of hours or days at or above (or below) a threshold temperature for disease 77 

development may be used to help predict whether a pest or pathogen is likely to occur, such as 78 

the models developed for controlling powdery mildew on grapes (Thomas et al., 1994). Seasonal 79 

averages of maximum or minimum daily temperatures at specific locations have also been used 80 

to assess the sensitivity of Ixodes pacificus tick densities (a Lyme disease carrier) in California 81 

forests, requiring finely resolved spatial and temporal data (Swei et al., 2011). These detailed 82 

data enable empirically based predictions of how pest-pathogen-host interactions may respond to 83 

future climate conditions (e.g. Caffarra et al. 2012). 84 

Several statistical methods are available for reconstructing time series of missing air 85 

temperature data. In general, techniques for estimating missing data are similar to spatial 86 

interpolation, extrapolation, and forecasting in that available observations are used to reconstruct 87 

missing observations (Henn et al., 2013). Common spatial interpolation techniques include thin-88 

plate splines (Pape et al., 2009), inverse-distance weighting (Daly et al., 2000), radial basis 89 

functions (Myers, 1992), and kriging (Cressie, 1993; Garen et al., 1994; Tobin et al., 2011). 90 

Temporally correlated processes are typically modeled using autoregressive time series (Raible 91 

et al., 1999). The above techniques are concerned either with estimating unknown values for 92 

single temporal realizations (spatial domain), or separately for each station regardless of their 93 

spatial proximity (temporal domain). Recent advancements in the theory of spatio-temporal 94 

processes have extended the above techniques for application to processes correlated in time and 95 

space (Cressie and Wikle, 2011). 96 



In this paper, we present a framework, with comparison of two statistical techniques, for 97 

estimating missing time series data collected across heterogeneous landscapes. We specifically 98 

examined (i) probabilistic space-time kriging (Cressie and Wikle, 2011; Heuvelink and Griffith, 99 

2010) on residuals from temporally-smoothed data and (ii) deterministic spatio-temporal 100 

correlations in the form of empirical orthogonal functions (EOF) (Beckers and Rixen, 2003; 101 

Lorenz, 1956). We applied these methods to an unusually dense network of hourly temperature 102 

measurements collected in forest understory environments across a spatially heterogeneous 103 

landscape. Although temperature measurements are often needed at different temporal scales 104 

(e.g. hourly, daily) depending on the analysis, for example, how species and communities 105 

respond to climate (Bolstad et al., 1998), little attention has been given to studying how temporal 106 

aggregation impacts the performance of methods for reconstructing missing data. A previous 107 

study inspected the effect of temporal aggregation on spatial prediction of understory 108 

temperature using physiographic and ecological factors over the same area used herein 109 

(Vanwalleghem and Meentemeyer, 2009). However, the presence of temporal dependence in the 110 

temperature time series was ignored in favor of focusing on single temporal aggregations, e.g. 111 

average maximum temperature for the month. 112 

In this study, we address several key questions: how does a geostatistical technique 113 

(space-time kriging) compare to a deterministic one (EOF) when trying to accurately estimate 114 

data gaps in microclimate measurements? How does spatial coverage (i.e. sampling size and 115 

density of stations) and temporal completeness (i.e. amount of missing data and gap length) 116 

affect the accuracy of model estimates? Do larger temporal aggregations of observations 117 

influence model accuracy?  118 



Finally, we offer guidelines and free source code for practitioners to fill gaps in 119 

understory temperature data, depending on the spatial density of available microclimate stations, 120 

duration of the missing data, and scale of analysis. 121 

Section 2 describes the study area, the temperature dataset, and the methodologies used to 122 

reconstruct the missing data across scenarios of spatial coverage and temporal gaps. Results are 123 

presented in section 3. Section 4 presents discussions and conclusions based on the results of the 124 

study. 125 

 126 

2. Materials and Methods 127 

 128 

The steps required to pre-process the available dataset and all subsequent statistical 129 

analyses were implemented in the R environment for statistical computing (R Core Team, 2013), 130 

and we provide free source code1.  131 

 132 

2.1. Study area and data 133 

 134 

During 2003, we established 200 ecological monitoring sites in forested stands across a 135 

349-km2 heterogeneous area in Sonoma County, California (Fig. 1). Sonoma County experiences 136 

a Mediterranean climate, with distinct wet and dry seasons (Barbour and Billings, 2000). 137 

Precipitation typically falls as rain from October through April, and a dry season occurs from 138 

May through September. The landscape is a mix of public and private property near the cities of 139 

Santa Rosa, Petaluma, and Sonoma with varying levels of agricultural and urban development 140 

                                                           
1 https://github.com/f-tonini/Microclimate-Sonoma 



(Fig. 1A). The forested areas are characterized by open oak woodlands, denser stands of mixed 141 

evergreen trees, and a few locations dominated by Coast redwood or Douglas-fir. Sites were 142 

randomly located across the forested landscape, resulting in an elevation gradient of the geo-143 

referenced site centers from 55 m to 800 m (mean = 378 m). Each site was equipped with a 144 

microclimate data logger, and has been revisited annually through 2014 to monitor conditions 145 

and download the data. Initially, each location had a temperature/relative humidity data logger 146 

(model H08-032-08; Onset Computer Corporation, Bourne, MA, USA) installed inside a solar 147 

radiation shield (model RS1, Onset Computer Corporation, Bourne, MA, USA) 1-m off the 148 

ground (Fig. 1C). These loggers began to fail in 2008, and so they were replaced with new 149 

temperature-only data loggers (model UA-001-64, Onset Computer Corporation, Bourne, MA, 150 

USA) inside the same solar radiation shields (Fig. 1B). During this ongoing project different 151 

personnel have managed data collection, leading to inconsistencies in the setting of the temporal 152 

resolution of the loggers across the sites and between years. In the remainder of this paper we 153 

address this challenge, as well as methods for handling varying levels of missing data that may 154 

often plague datasets collected over many years. 155 

 156 

Figure 1-caption at the end of file 157 

 158 

2.2. Data processing 159 

 160 

Several pre-processing steps were necessary in order to prepare the data for the analysis: 161 

(1) temperature values from each data logger were pre-screened to check for outliers exceeding 162 

plausible maximum and minimum values; (2) The full database was aligned to match a common 163 



hourly resolution. Data recorded at intervals shorter than an hour were averaged. This step was 164 

required because some data loggers recorded temperature values at different time intervals (e.g. 165 

30, 45 minutes). (3) The full database was sliced to begin on May 1st, 2003 and end on April 30th, 166 

2014 in order to keep a large number of available stations every year (≥ 100). (4) Time series 167 

points in which the rate of change between hours was considered excessive were replaced by a 168 

missing-value flag. In this case, a rate of change >4°C h-1 was chosen as reasonable threshold 169 

based on other studies (Henn et al., 2013). (5) Lastly, temperature time series were visually 170 

inspected for each station to spot the presence of erroneous patterns (e.g. if a data logger kept 171 

recording data after being removed from the field). If present, these data points were replaced 172 

with a missing-value flag. 173 

The analyses presented herein were conducted using data from the year 2004, which 174 

together with 2005 had the largest number of actively recording stations (n = 200). Overall, 10% 175 

of the observations were missing for 2004, providing a good trade-off between missing data and 176 

number of useable stations for testing the performance of our models. A map showing the 177 

percentages of missing values at each station for the year 2004 can be found in Appendix A 178 

(online version). 179 

 180 

2.3. Statistical methods 181 

 182 

We incorporated spatio-temporal correlations between observations and estimated missing 183 

values in the recorded time series of understory temperature by using (i) local space-time kriging 184 

(STK, hereafter) (Cressie and Wikle, 2011; Heuvelink and Griffith, 2010) and (ii) empirical 185 

orthogonal functions (EOF, hereafter) (Beckers and Rixen, 2003; Lorenz, 1956). These two 186 

statistical approaches were chosen to compare a geostatistical (STK) to a deterministic (EOF) 187 



technique, and because of their applicability to different fields of study, such as oceanography 188 

and meteorology (Alkuwari et al., 2013; Beckers and Rixen, 2003; Hengl et al., 2012; Lorenz, 189 

1956; Youzhuan et al., 2008; Yu and Chu, 2010). Deterministic techniques, compared to 190 

geostatistical ones, do not make use of any a priori hypothesis based on some probability 191 

distributions and, hence, no statistical test (Cressie, 1993). An outline of the theory, main 192 

assumptions, and modeling settings used in each technique follows. 193 

 194 

2.3.1. Local space-time kriging 195 

 196 

Consider a continuous variable 𝑍, e.g. temperature, varying over a spatial domain 𝑆 and 197 

a time interval 𝑇. Let 𝑧(𝒔𝑖 , 𝑡𝑖), 𝑖 = 1,2, … , 𝑛 be a set of 𝑛 data observed at a finite set of 198 

locations in space and points in time, where 𝒔 is a vector of spatial coordinates, {𝒔 = (𝑥, 𝑦)}, 199 

and 𝑡 represents a series of points in time. In a space-time geostatistical framework, unobserved 200 

values 𝑧(𝒔0, 𝑡0) are typically predicted at a number of nodes (𝒔0, 𝑡0) of a spatio-temporal grid. 201 

Predictions are made by exploiting the spatio-temporal correlation between observed locations 202 

𝑧(𝒔𝑖 , 𝑡𝑖) using techniques such as kriging (Cressie, 1993). Commonly used kriging models 203 

include space-time ordinary kriging and universal kriging, also known as kriging with an 204 

external drift (Hengl et al., 2012). Kriging requires directly estimating spatio-temporal 205 

covariances or, more commonly, the semivariances between observed values using spatio-206 

temporal variograms as follows: 207 

𝛾(ℎ, 𝑢) =  
1

2𝑛(ℎ, 𝑢)
∑ [𝑧(𝒔𝑖 , 𝑡𝑖) −  𝑧(𝒔𝑖 + ℎ, 𝑡𝑖 + 𝑢)]2,

𝑛(ℎ,𝑢)

𝑖=1

 208 



where 𝛾 measures the average dissimilarity between data separated by a given spatial and 209 

temporal lag (ℎ, 𝑢), where ℎ is the Euclidean spatial distance |𝐡| and 𝑢 is the time interval. 210 

A diverse range of models have been proposed to capture the structure of spatio-temporal 211 

autocorrelation, including the product model (Rodriguez-Iturbe and Mejia, 1974), the metric 212 

model (Dimitrakopoulos and Luo, 1994), the product-sum model (De Cesare et al., 2001), and 213 

the sum-metric model (Heuvelink et al., 2012). The sum-metric model was adopted for this study 214 

because it handles the space-time interaction in a flexible way, without imposing symmetry 215 

constraints between the spatial and temporal correlation components. The sum-metric variogram 216 

structure is defined as: 217 

𝛾(ℎ, 𝑢) = 𝛾𝑆(ℎ) + 𝛾𝑇(𝑢) + 𝛾𝑆𝑇 (√ℎ2 + (𝛼 · 𝑢)2) , (1) 218 

where 𝛾(ℎ, 𝑢) represents the semivariance for ℎ and 𝑢 units of spatial and temporal distance, 219 

respectively.  𝛾𝑆(ℎ) describes the purely spatial components, while 𝛾𝑇(𝑢) describes the purely 220 

temporal component. The space-time interaction component is described by 𝛾𝑆𝑇(ℎ, 𝑢), where 221 

the geometric anisotropy between space and time, i.e. the range variation in different dimensions, 222 

is handled by the parameter 𝛼, which converts units of temporal distances into units of spatial 223 

distance (Kilibarda et al., 2014). In local space-time kriging, the spatio-temporal covariance 224 

function is evaluated only for the “strongest” neighbors of a prediction point, i.e. only the first 𝑛  225 

number of observations with the strongest correlation are used, with 𝑛 assigned by the user. 226 

It is necessary to remove large-scale spatial trends and seasonality prior to investigating 227 

the spatio-temporal covariance structure of the data because space-time kriging assumes 228 

stationarity and spatial isotropy (Kilibarda et al., 2014). For this purpose, a loess (“locally-229 

weighted scatterplot smoothing”) smoothing curve (Cleveland and Devlin, 1988) was applied 230 



separately for each station and residuals of each temperature time series were used for local 231 

space-time kriging (e.g. Fig. 2). 232 

 233 

Figure 2-caption at the end of file 234 

 235 

All spatio-temporal kriging models were implemented using the gstat (Pebesma, 2004), 236 

spacetime (Pebesma, 2012), and stats (R Core Team, 2013) R packages. 237 

 238 

2.3.2. Empirical orthogonal functions 239 

 240 

The spatio-temporal correlation structure of a dataset may also be described by a set of 241 

orthogonal functions, called empirical orthogonal functions. Let 𝑇𝑛(𝑡) represent the temperature 242 

values recorded at 𝑁 stations as a function of time. Assuming these values are observed at 𝑀 243 

times, 𝑡1, 𝑡2, . . . , 𝑡𝑀 , it is possible to expand 𝑇𝑛(𝑡) as follows: 244 

        𝑇𝑛(𝑡𝑖) = ∑ 𝑌𝑘𝑛𝑄𝑘(𝑡𝑖)𝑁
𝑘=1  245 

where 𝑌𝑘𝑛 represent the time-independent basis functions, i.e. EOF, and 𝑄𝑘(𝑡𝑖) represent time-246 

dependent coefficients or weights. Standard singular value decomposition (SVD) techniques 247 

(Klema and Laub, 1980) can be applied to the spatio-temporal dataset matrix to generate a set of 248 

EOF, where the first orthogonal components contain the bulk of the variance and explain the 249 

dominant patterns of spatio-temporal variation (Beckers and Rixen, 2003). The leading 250 

components are most likely to describe large-scale spatio-temporal patterns, while the latter ones 251 

might contain a mix of local-scale patterns and instrument noise (Henn et al., 2013). EOF can be 252 

considered as a set of optimally defined functions of space with associated temporal weights at 253 



each time. However, SVD cannot be used when a dataset matrix contains missing data. To 254 

overcome this issue, Beckers and Rixen (2003) developed a parameter-free iterative estimation 255 

technique to reconstruct both missing data and the complete EOF. Missing data are first replaced 256 

by an unbiased guess, i.e. the overall dataset mean, and then iteratively estimated by using a 257 

truncated series of EOF until reaching convergence. A detailed description of the estimation 258 

algorithm can be found in Appendix B (online version). EOF have been widely applied in both 259 

oceanography and meteorology (Beckers and Rixen, 2003; Lorenz, 1956; Youzhuan et al., 2008; 260 

Yu and Chu, 2010), as well as used in statistical downscaling methods in geophysics (Alkuwari 261 

et al., 2013). A recent study applied the EOF reconstruction technique to estimate missing values 262 

in air temperature datasets (Henn et al., 2013). The truncated EOF algorithm was implemented 263 

using a set of R functions (R Core Team, 2013), following the method proposed by Beckers and 264 

Rixen (2003). 265 

 266 

2.4. Missing data scenarios 267 

 268 

We developed three scenarios of missing data to assess the influence of spatial coverage 269 

and temporal completeness on the efficacy of each statistical technique for filling data gaps in 270 

space and time. Specifically, we artificially altered the number of sampling locations (sampling 271 

size/density), the number of randomly missing observations, and serial missingness of 272 

observations (consecutively missing observations at different times and at different locations). 273 

Each scenario is described in further detail in the following sections. 274 

 275 

2.4.1. Sampling size/density scenario 276 



 277 

We examined the case in which the available network of microclimate stations has a 278 

lower spatial density. The complete set of available microclimate stations (n = 200, 0.57 279 

stations/km2) was artificially altered by removing an increasing number of locations. 280 

Specifically, we examined reductions in sampling size of 25% (n = 150, 0.43 stations/km2), 50% 281 

(n = 100, 0.29 stations/km2), and 75% (n = 50, 0.14 stations/km2). In each case, stations were 282 

removed in a randomized fashion (see Fig. 3 A-D). We reconstructed microclimate 283 

measurements only within these spatially reduced datasets, without any attempt to spatially 284 

interpolate values at locations that were removed from the original dataset. 285 

 286 

Figure 3-caption at the end of file 287 

 288 

2.4.2. Gap length and amount of missing values scenario 289 

 290 

We also examined cases where the missing data may not be stations but temporal gaps 291 

instead. These temporal gaps may be in the form of either random occurrence (random 292 

missingness) or a long section of consecutively missing values (seasonal missingness). To 293 

examine these two types of missing data the available spatio-temporal dataset matrix was either 294 

artificially altered by randomly removing 50% of the observations (random missingness, Fig. 295 

4C), or randomly removing three consecutive months of observations (seasonal missingness, Fig. 296 

4B). 297 

 298 

Figure 4-caption at the end of file 299 



 300 

2.5. Performance metrics 301 

 302 

We evaluated each statistical technique in terms of prediction accuracy, ignoring missing 303 

values in the dataset during model evaluation. A 10-fold cross validation was carried out, where 304 

a single subsample was retained as the validation data for testing the model, while using the 305 

remaining portion for model training. The following prediction metrics were quantified in order 306 

to compare the original data to model predictions: 307 

Root-mean-square error (RMSE): 308 

The root-mean-square error is defined as follows: 309 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑[�̂�(𝒔𝑖,𝑡𝑖) − 𝑇(𝒔𝑖,𝑡𝑖)]2

𝑚

𝑖=1

, 310 

where �̂�(𝒔𝑖,𝑡𝑖) − 𝑇(𝒔𝑖,𝑡𝑖) represents the difference between the predicted and observed 311 

temperature at space-time points (𝒔𝑖,𝑡𝑖) and 𝑚 is the length of the time series of observations for 312 

each station. The root-mean-square error was also used in the iterative EOF reconstruction 313 

algorithm as a criterion to determine the optimal number of EOF for minimizing the error (see 314 

Appendix B, online version, for more details). 315 

Mean absolute error (MAE): 316 

The mean absolute error is a simple arithmetic average of the absolute errors and is defined as 317 

follows: 318 

𝑀𝐴𝐸 =
1

𝑚
∑|�̂�(𝒔𝑖,𝑡𝑖) − 𝑇(𝒔𝑖,𝑡𝑖)|

𝑚

𝑖=1

                                           319 

Mean-square-error skill score: 320 



A skill score measures the forecast accuracy with respect to the accuracy of a reference forecast. 321 

Positive values correspond to a skill, while negative ones correspond to no skill. The mean-322 

square-error skill score (SSMSE) is defined as follows: 323 

𝑆𝑆𝑀𝑆𝐸 = 1 −
𝑀𝑆𝐸

𝑀𝑆𝐸𝑟𝑒𝑓
 ,                                          324 

where MSE is defined as the quantity within the square root in the RMSE formula above. 𝑆𝑆𝑀𝑆𝐸 325 

was calculated by using the observed average as baseline reference (Murphy, 1988). 326 

Correlation coefficient (COR): 327 

Perhaps the simplest overall measure of performance, the correlation coefficient is defined as: 328 

𝐶𝑂𝑅 =
𝐶𝑜𝑣(�̂�(𝒔𝑖,𝑡𝑖), 𝑇(𝒔𝑖,𝑡𝑖))

𝒔�̂�𝒔𝑇
 ,                                         329 

where 𝒔�̂� and 𝒔𝑇 indicate the standard deviations of predicted and observed temperature values, 330 

respectively. The correlation coefficient measures the linear association between forecast and 331 

observation. However, it only performs well when data are normally distributed and it is 332 

extremely sensitive to large values and outliers (Taylor, 2001).  333 

Both the RMSE and MAE disregard the direction of over- or under- prediction. All four 334 

metrics were averaged over the total number of available stations to come up with an overall 335 

measure of accuracy. However, these can also be calculated and mapped separately for each 336 

station to assess where the statistical techniques had higher/lower accuracy (Fig. C.1-C.2, 337 

Appendix C, online version). In order to analyze the impact of temporal aggregation on 338 

prediction accuracy the original dataset and modeled predictions were aggregated from an hourly 339 

to daily resolution (daily mean, maximum, and minimum). Days for which this aggregation 340 

process did not remove missing values were ignored in the calculation of both performance 341 

metrics.  342 



 343 

3.  Results 344 

 345 

3.1. Exploratory Data Analysis 346 

 347 

In order to inspect the degree to which pairs of time series are correlated, we selected a 348 

group of microclimate stations in close proximity (Fig. 5A) and looked at the cross-correlation 349 

function (CCF) (Berezin et al., 2012). 350 

 351 

Figure 5-caption at the end of file 352 

 353 

Similar patterns of cross-correlations (Fig. 5B) suggested the presence of a strong spatial 354 

dependence among stations in close proximity. The extended correlation over time can perhaps 355 

be explained by the buffering effect that forest canopies have on the hourly temperature 356 

measurements. This preliminary analysis was replicated on other groups of stations and revealed 357 

approximately the same patterns of spatio-temporal dependency.  358 

 359 

3.2. Local space-time kriging for hourly temperature 360 

 361 

Residuals from loess-smoothed hourly temperature data show a clear spatio-temporal 362 

correlation pattern (Fig. 6A), following the main hypothesis of space-time variograms, i.e. the 363 

spatial structure becomes weaker as the time differences increase (Fig. 6B). Therefore, spatio-364 

temporal kriging of residuals is applicable.  365 

 366 



Figure 6-caption at the end of file 367 

 368 

The three components of the sum-metric variogram model and their parameters (Table 1) 369 

were chosen based on the combination that gave the best accuracy in predicting the observed 370 

hourly temperature.  371 

 372 

Table 1-caption at the end of file 373 

 374 

The parameters show that all components are needed to capture the residual spatio-temporal 375 

pattern in the loess-smoothed time series of hourly temperature. The range parameters in both the 376 

purely spatial and joint space-time components are very large, indicating that the residuals are 377 

correlated over distances up to ~240 km. The highest prediction accuracy for the local space-time 378 

kriging technique was reached when setting the maximum number of neighbors equal to 10 (i.e. 379 

using the 10 strongest correlated). The spatio-temporal anisotropy (α = 2.96 m/hour) shows that 380 

stations with a temporal lag of 1 day exhibit a similar correlation as stations that are about 70 381 

meters (2.96 * 24) apart. 382 

 383 

3.3. Empirical orthogonal functions for hourly temperature 384 

 385 

The iterative EOF estimation routine (Appendix B, online version) suggested that the 386 

optimal number of orthogonal functions to use with the hourly temperature measurements is 387 

equal to nine (Fig. 7). The RMSE starts leveling out after the first six components until reaching 388 

a minimum for nine EOF. This number is considered as the optimal number of EOF needed to 389 



explain most spatio-temporal variability found in the hourly temperature dataset. The first EOF 390 

alone explained 55% of the dataset variance, and the first nine together explained about 70%. 391 

 392 

Figure 7-caption at the end of file 393 

 394 

3.4. Comparison of model predictions 395 

 396 

Both STK and EOF predicted hourly temperatures accurately (Fig. 8A-B), with a 397 

correlation of about 0.98 between predicted and observed values for each method. A slightly 398 

higher heteroscedasticity can be observed for STK (Fig. 8A).  399 

 400 

Figure 8-caption at the end of file 401 

 402 

We selected two temporal windows from the hourly time series of a representative microclimate 403 

station to show the resulting predictions for both statistical techniques. The reconstructed time 404 

series of hourly temperatures shows some differences between the two models (Fig. 9A-B). The 405 

extended gap length likely affected model predictions over the missing portion of the time series 406 

(Fig. 9A). The reconstructed values show a similar variability between the two methods, with 407 

STK predicting lower hourly temperature values compared to EOF. The high prediction accuracy 408 

of both techniques is confirmed by looking at the reconstructed values over a portion of available 409 

data (Fig. 9B). Although similar in their accuracy, the EOF technique predicted the observed 410 

time series better compared to STK.        411 

 412 

Figure 9-caption at the end of file 413 



 414 

Performance differences between STK and EOF were more pronounced at the hourly 415 

temporal resolution compared to the chosen daily aggregations (mean, max, min), with 416 

magnitudes depending on the missing data scenario used (Fig. 10). The model performance 417 

measured in terms of MAE, MSE skill score (SSMSE), and COR confirmed a similar trend to that 418 

observed for the RMSE (Appendix D, online version). Overall, the EOF technique predicted the 419 

observed time series of data more accurately (lower RMSE and MAE, higher COR and SSMSE) 420 

than STK regardless of the temporal aggregation. The accuracy of both modeling methods 421 

converged as the sampling size/density was reduced, indicating that the performance of EOF 422 

degrades rapidly as spatial coverage decreases. Conversely, STK was less sensitive to the 423 

reduction of sampling density with only slight decreases in model accuracy. At the daily 424 

resolution, prediction accuracy was almost identical when 75% of the stations were removed, 425 

however, at an hourly resolution EOF provided greater accuracy. EOF was affected by the 426 

random and seasonal temporal missingness scenarios to a lesser extent than STK. 427 

 428 

Figure 10-caption at the end of file 429 

 430 

4. Discussion and Conclusions 431 

 432 

Our focus was to accurately reconstruct incomplete forest microclimate measurements 433 

rather than inspecting the relative importance of ecological and physiographic variables on 434 

microclimate dynamics (e.g. Vanwalleghem and Meentemeyer, 2009). 435 

Results indicate that a reduction in sampling size/density has a greater effect on EOF 436 

model predictions than temporal missingness. In contrast, STK was more affected by temporal 437 



missingness compared to EOF, with seasonal gaps (ss_noise) reducing STK prediction accuracy 438 

more than the presence of a larger number of randomly missing data (rnd_noise). The lower 439 

performance of the space-time kriging technique in these settings may be explained by a lack of 440 

stationarity and spatial isotropy of the spatio-temporal covariance structure (Kilibarda et al., 441 

2014). We speculate that additional temporal gaps contributed to degrading stationarity and 442 

spatial isotropy. Stationarity assumptions are likely inaccurate when evaluating the raw (hourly) 443 

temperature data, leading to less accurate predictions. We tried to address this issue by using 444 

residuals of loess-smoothed time series, separately for each station, and by using a flexible 445 

space-time variogram model. In contrast, EOF offers a convenient method for characterizing 446 

dominant spatial patterns of variability by exploiting the spatio-temporal covariance structure 447 

without making any assumptions on the probabilistic distribution of data. The effect of the 448 

number of stations for the automatic EOF reconstruction routine has been demonstrated in a 449 

previous study, where the method performed best with more than 16 stations (Henn et al., 2013). 450 

Temporal aggregation reduced the error in each modeling technique, as well as the differences in 451 

the accuracy between them, with the lowest RMSE values for both EOF and STK observed when 452 

modeling the daily mean. The smaller differences between model accuracies at the daily 453 

resolution can be explained by fewer missing values left in the dataset after aggregation. 454 

Depending on the characteristics of their dataset, Fig. 10 can instruct practitioners on the 455 

different trade-offs that need to be considered when choosing a method for filling in missing 456 

temperature data recorded by understory microclimate stations. On the basis of the above results, 457 

it was clear that the station density, the amount of missing values, and the length of data gaps 458 

affected the performance of the chosen statistical methods. Although people have successfully 459 

used kriging with as few as seven data points (Jernigan, 1986), successful applications also 460 



depend on the extent of the study area over which they are distributed. On the one hand, a 461 

general rule of thumb in the literature appears to be around a minimum of 30 stations (ASTM 462 

Standard D5922, 2010). On the other hand, although a large amount of data typically improves 463 

the predictive power of space-time kriging, it can also pose computational challenges due to the 464 

big n problem (Banerjee et al., 2004). Whenever the primary goal is to predict temperature data 465 

at unobserved locations, space-time kriging represents the most common and immediate solution 466 

to spatially interpolate observed data and have an associated measure of prediction uncertainty. 467 

The use of space-time kriging requires a fair amount of time to calibrate all the parameters and 468 

tune the model (see section 3.2), thus representing a limitation compared to the automatic EOF 469 

estimation routine. 470 

 471 

4.1. Guidelines for reconstructing missing forest microclimate measurements 472 

 473 

We herein summarize general “rules-of-thumb” and trade-offs between the two statistical 474 

approaches in order to guide method selection: 475 

 EOF should be preferred over STK for highly correlated hourly observations. The 476 

increase of temporal aggregation levels (e.g. daily) resulting in a smaller 477 

dependence among observations reduces discrepancies between predictive 478 

performance of EOF and STK. 479 

 Use EOF when dealing with either random or consecutive seasonal patterns of 480 

temporal gaps in the observations. Discrepancies between the predictive 481 

performance of both modeling approaches decrease when increasing temporal 482 

aggregation. 483 



 Use STK when interpolating values at unobserved locations. Although this 484 

methodology has been successfully applied to small numbers of ground stations 485 

over small spatial extents, a minimum of 30 stations should be used as a rule-of-486 

thumb. EOF would simply apply the mean value of all the observations to the 487 

unobserved locations, thus not capturing physical influences. 488 

 STK should be preferred over EOF for sparse networks of ground stations (< 50 489 

or 0.14 stations/ km2) with few temporal gaps (preferably random) in the 490 

available observations. 491 

We demonstrated methods to reconstruct hourly time series of microclimate data by 492 

exploiting the spatio-temporal correlation between microclimate sensors placed under forest 493 

canopy and compared the predictive accuracies of two spatio-temporal statistical techniques, a 494 

geostatistical (STK) and a deterministic one (EOF), in reconstructing hourly time series of data. 495 

To the best of our knowledge, this is the first study to quantify in a comprehensive way the 496 

performance of both methods at a landscape-level based on several missing data scenarios as 497 

well as the impact of temporal aggregation. A dense network of 200 microclimate stations 498 

allowed us to analyze the impact that sampling size/density, the overall amount of missing data, 499 

and the length of data gaps had on model predictions. The framework presented herein could be 500 

used to assimilate multiple data sources measured at different temporal resolutions providing an 501 

avenue for integrating key aspects of fine-scale spatial heterogeneity into ecosystem studies. 502 
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 655 



 656 

Figure 1 Overview of the Sonoma study system, California, with indication of canopy 657 

density and microclimate sensor locations. (A) Photo of the landscape characteristic of the 658 

study area. (B) The temperature-only logger installed beginning in 2008, and (C) A solar 659 

radiation shield housing the temperature logger installed in the forest understory (HOBO 660 

H8 Pro, Onset Corp., Bourne, MA, USA). Available in color online. 661 
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 670 

Figure 2 Hourly temperature (gray solid line) and loess smoother (span = 0.1) of hourly 671 

temperature (red dashed line) for station ANN01. Available in color online. 672 
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 691 

 692 

Figure 3 Sampling size/density reduction scenarios. (A) All locations (n = 200, 0.57 693 

stations/km2). (B) Random removal of 25% of the stations from the original network (n = 694 

150, 0.43 stations/km2). (C) Random removal of 50% of the stations from the original 695 

network (n = 100, 0.29 stations/km2). (D) Random removal of 75% of the stations from the 696 

original network (n = 50, 0.14 stations/km2). 697 
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 705 

Figure 4 Data removal scenarios. (A) Original hourly temperature measurements in 2004. 706 

(B) Randomized removal of consecutive 3-month blocks of hourly temperature 707 

measurements for randomly selected stations (C) Randomized removal of 50% of hourly 708 

temperature measurements. Lighter areas correspond to higher temperature values. 709 

Completely white sections are missing data. Available in colors online. 710 
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 725 

Figure 5 Temporal cross-correlation between four closely located stations within the study 726 

area. (A) Selected stations: ANN01, ANN02, ANN03, ANN04. (B) Cross-correlation plot. 727 

Available in colors online. 728 
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 742 

Figure 6 Sample (left) space-time variogram of residuals from loess smoothing of hourly 743 

temperature and fitted (right) sum-metric model. The variogram surface is presented in 3-744 

D. Lighter areas correspond to higher values. Available in colors online. 745 
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 762 

Figure 7 Root-mean-square error calculated for hourly temperature by the iterative 763 

estimation routine for an increasing number of EOF. The optimal number of EOF (n = 9) is 764 

chosen based on the convergence criteria set up in the algorithm. Available in colors online. 765 
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 784 

Figure 8 General relationship between observed and predicted hourly temperature. (A) 785 

Space-time kriging. (B) Empirical orthogonal functions. Cells along the diagonal are in a 786 

1:1 relationship. Hexagonal bins are used to group points. 787 
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 796 

Figure 9 Hourly temperature (gray line) with overlaid predicted hourly temperature by 797 

space-time kriging (STK, red line) and empirical orthogonal functions (EOF, blue line) for 798 

station LARS01. (A) Predictions over a missing section of the dataset. (B) Predictions over 799 

a complete section of the dataset. Available in colors online. 800 
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 807 

Figure 10 Root-mean-square error (RMSE) for space-time kriging (STK, golden dashed 808 

line) and empirical orthogonal functions (EOF, blue solid line) with different scenarios of 809 

missing data (see section 2.4). (A) Hourly temperature (B) Daily mean temperature. (C) 810 

Daily minimum temperature. (D) Daily maximum temperature. Available in colors online. 811 
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Table 1 Parameters of the fitted sum-metric variogram model for hourly temperature loess 817 

residuals. The model used for each component (see eq.(1)) is also specified. 818 

 Model 

Nugget 

(semivariance) 

Partial Sill 

(semivariance) 

Range 

Anisotropy 

Ratio 

Space Exponential 0 7.21 243.28 km  

Time Gaussian 0 20.74 6.28 hours  

Joint Spherical 2.09 7.15 243.47 km 2.96 m/hour 
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Appendix A. 839 

 840 

Figure A.1 Percentages of missing values in the observed understory temperature at each 841 

microclimate station for the year 2004. 842 



Appendix B. Empirical Orthogonal Function Estimation Algorithm 843 

 844 

The following pseudo-code algorithm is illustrated to match the R code we implemented (github 845 

link). The structure has been re-adapted from the study by Beckers and Rixen (2003) and the 846 

appendix presented in Henn et al. (2013).  847 

X = m × n (m = hours, n = stations)  848 

 849 

1. Calculate X_mean (overall dataset mean) and X_sd (overall dataset standard deviation) 850 

2. X0 = X – X_mean / X_sd  (standardize variable) 851 

3. X0 [sub] = X0_val.  Subset portion of data from X0 for validation. Replaced with missing 852 

values in X0.  853 

4. X0 [sub] = missing. Values set aside for validation are replaced with missing values in X0. 854 

5. X0 [missing] = 0; replace all missing values with unbiased guess. 855 

6. Outer FOR LOOP: 856 

FOR Ne (number of EOF) = min (n, 30); Minimum between number of stations n and 30. 857 

 X1 = X0; Make a copy of X0. X1 will be iteratively improved within the inner loop. 858 

7. Inner FOR LOOP: 859 

FOR k (iteration) = 2 to Nit (max number of iterations)  860 

8.    [U, D, V] = SVD(X1);  Singular value decomposition (SVD). 861 

Ut = U [ ,1:Ne];  Columns are left singular vectors of X1. Truncate 862 
components using first Ne EOFs. 863 

Dt = D [1:Ne,1:Ne];  Diagonal matrix with singular values. Truncate 864 
components using first Ne EOFs. 865 

Vt = V [ ,1:Ne];  Columns are right singular vectors of X1. Truncate 866 

components using first Ne EOFs. 867 
 868 
9.                                 Xa = Ut Dt Vt

T;  Xa is the reconstructed matrix.  869 
 870 
10.                               Xa [!missing] = X0 [!missing];   Restore original data in the estimated 871 

matrix except where missing in X0.    872 
11.                               dx = sum[(Xa - X1)2]; Calculate deviance of estimated matrix 873 

from X1. 874 
12.                               mx = sum[(Xa)2]; Calculate deviance of estimated matrix. 875 



13.                               IF dx/mx < tol BREAK (go to outer loop); Test for convergence.  876 

   ELSE X1 = Xa; Make a copy of Xa and NEXT (k = k +1)  877 

14.  𝑅𝑀𝑆𝐸[𝑁𝑒] = √(𝑋𝑎[𝑠𝑢𝑏] − 𝑋0𝑣𝑎𝑙
)2 ; Calculate RMSE using Ne EOFs.             878 

IF Ne > 1 & (𝑅𝑀𝑆𝐸[𝑁𝑒 − 1] − 𝑅𝑀𝑆𝐸[𝑁𝑒]) < 0.01 BREAK (exit outer 879 

loop) 880 

ELSE NEXT (Ne = Ne + 1); If the decrease in RMSE is almost zero, exit 881 

the outer look. Otherwise increase number of 882 

EOFs by one and restart. 883 

 884 

END 885 

 886 
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Appendix C. 913 

 914 

Figure C.1 RMSE of the predicted hourly temperature at each microclimate station for the 915 

year 2004 using STK. 916 



 917 

Figure C.2 RMSE of the predicted hourly temperature at each microclimate station for the 918 

year 2004 using EOF. 919 



Table D.1 Root-mean-square error (RMSE) for space-time kriging (STK) and empirical 920 

orthogonal functions (EOF) with different scenarios of missing data at different temporal 921 

aggregations. 922 

 HOURLY 

 baseline sp_75 sp_50 sp_25 rnd_noise ss_noise 

EOF 0.78 0.82 0.9 0.98 0.84 0.94 

STK 1.11 1.11 1.12 1.15 1.22 1.34 

 DAILY MEAN 

EOF 0.42 0.48 0.51 0.61 0.49 0.58 

STK 0.59 0.59 0.62 0.65 0.65 0.91 

 DAILY MINIMUM 

EOF 0.72 0.76 0.78 0.89 0.78 0.87 

STK 0.85 0.87 0.88 0.92 0.93 1.18 

 DAILY MAXIMUM 

EOF 0.69 0.72 0.78 0.85 0.79 0.83 

STK 0.82 0.83 0.84 0.87 0.92 1.20 
 923 

 924 

Table D.2 Mean Absolute Error (MAE) for space-time kriging (STK) and empirical 925 

orthogonal functions (EOF) with different scenarios of missing data at different temporal 926 

aggregations. 927 

 HOURLY 

 baseline sp_75 sp_50 sp_25 rnd_noise ss_noise 

EOF 0.56 0.58 0.61 0.68 0.62 0.64 

STK 0.93 0.92 0.93 0.96 0.97 1.02 

 DAILY MEAN 

EOF 0.37 0.41 0.45 0.51 0.44 0.52 

STK 0.48 0.49 0.49 0.50 0.53 0.60 

 DAILY MINIMUM 

EOF 0.52 0.55 0.59 0.66 0.58 0.63 

STK 0.75 0.77 0.77 0.79 0.81 0.95 

 DAILY MAXIMUM 

EOF 0.48 0.52 0.58 0.64 0.61 0.65 

STK 0.73 0.74 0.77 0.77 0.80 0.91 

 928 

 929 



Table D.3 Correlation (COR) for space-time kriging (STK) and empirical orthogonal 930 

functions (EOF) with different scenarios of missing data at different temporal 931 

aggregations. 932 

 HOURLY 

 baseline sp_75 sp_50 sp_25 rnd_noise ss_noise 

EOF 0.95 0.92 0.89 0.87 0.93 0.88 

STK 0.94 0.93 0.91 0.89 0.90 0.87 

 DAILY MEAN 

EOF 0.97 0.94 0.92 0.91 0.92 0.90 

STK 0.96 0.96 0.94 0.93 0.92 0.89 

 DAILY MINIMUM 

EOF 0.93 0.91 0.89 0.85 0.91 0.88 

STK 0.89 0.89 0.88 0.86 0.89 0.84 

 DAILY MAXIMUM 

EOF 0.94 0.92 0.91 0.88 0.92 0.89 

STK 0.92 0.92 0.89 0.89 0.88 0.85 
 933 

Table D.4 Mean-square-error skill Score (SSMSE) for space-time kriging (STK) and 934 
empirical orthogonal functions (EOF) with different scenarios of missing data at different 935 

temporal aggregations. 936 

 HOURLY 

 baseline sp_75 sp_50 sp_25 rnd_noise ss_noise 

EOF 0.98 0.97 0.95 0.92 0.93 0.90 

STK 0.93 0.93 0.90 0.90 0.91 0.86 

 DAILY MEAN 

EOF 0.96 0.95 0.94 0.92 0.92 0.91 

STK 0.96 0.95 0.95 0.93 0.93 0.87 

 DAILY MINIMUM 

EOF 0.94 0.94 0.92 0.89 0.90 0.88 

STK 0.91 0.91 0.91 0.90 0.89 0.85 

 DAILY MAXIMUM 

EOF 0.96 0.95 0.92 0.88 0.92 0.89 

STK 0.94 0.92 0.91 0.91 0.89 0.87 

 937 


